http://telegramfullz.feshop-18-ru.ru Для чего нужны аэс. Принцип работы атомной электростанции. Справка. Насколько безопасна атомная энергетика

Для чего нужны аэс. Принцип работы атомной электростанции. Справка. Насколько безопасна атомная энергетика

Атомная электростанция – предприятие, представляющее собой совокупность оборудования и сооружений для выработки электрической энергии. Специфика данной установки заключается в способе получения тепла. Необходимая для выработки электроэнергии температура возникает в процесса распада атомов.

Роль топлива для АЭС выполняет чаще всего уран с массовым числом 235 (235U). Именно потому, что этот радиоактивный элемент способен поддерживать цепную ядерную реакцию, он используется на атомных электрических станциях, а также применяется в ядерном оружии.

Страны с наибольшим количеством АЭС

На сегодняшний день в 31 стране мира функционируют 192 атомные электростанции, использующие 451 энергетический ядерный реактор общей мощностью 394 ГВт . Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще. Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии .

За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 - в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на Китай , Индию и Россию . КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.

Помимо США, к списку наиболее продвинутых в области ядерной энергетики стран относят:

  • Францию;
  • Японию;
  • Россию;
  • Южную Корею.

В 2007 году Россия приступила к строительству первой в мире плавучей АЭС , позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны . Строительство столкнулось с задержками. По разным оценкам, первая плавающая АЭС заработает в 2019-2019 годах.

Несколько стран, включая США, Японию, Южную Корею, Россию, Аргентину, ведут разработки мини-АЭС с мощностью порядка 10-20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов. Предполагается, что малогабаритные реакторы (см., например, Hyperion АЭС) могут создаваться с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества . Строительство одного малогабаритного реактора CAREM25 ведётся в Аргентине. Первый опыт использования мини-АЭС получил СССР (Билибинская АЭС).

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

За данным корпусом следует зал. В нем обустроены парогенераторы и находится основная турбина. Сразу же за ними располагаются конденсаторы, а также линии передачи электричества, выходящие за границы территории.

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C ). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Защитные механизмы АЭС

Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:

  • локализующие – ограничивают распространение вредоносных веществ в случае аварии, повлекшей выброс радиации;
  • обеспечивающие – подают определённое количество энергии для стабильной работы систем;
  • управляющие – служат для того, чтобы все защитные системы функционировали нормально.

Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.

После того как в Чернобыльской АЭС произошла опасная авария , причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.

Катастрофа ХХІ века и её последствия

В марте 2011 года северо-восток Японии поразило землетрясение, вызвавшее цунами, которая в итоге повредила 4 из 6 реакторов АЭС «Фукусима-1».

Менее чем через два года после трагедии официальное количество погибших в катастрофе превышало 1500 человек, в то время как 20 000 человек до сих пор считаются пропавшими без вести, а еще 300 000 жителей были вынуждены оставить свои дома.

Были и пострадавшие, которые оказались не способны покинуть место происшествия из-за огромной дозы излучения. Для них была организована незамедлительная эвакуация, продолжавшаяся 2 дня.

Тем не менее, с каждым годом методы предотвращения аварий на АЭС, а также нейтрализации ЧП совершенствуются – наука неуклонно идёт вперёд. Тем не менее, будущее явно станет временем расцвета альтернативных способов получения электроэнергии — в частности, логично ожидать появления в ближайшие 10 лет орбитальных солнечных батарей гигантского размера, что вполне достижимо в условиях невесомости, а также прочих, в том числе революционных технологий в энергетике.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.

Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!

Что такое АЭС?

16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.

Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.

В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.

Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.

Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.

Какое топливо используют на АЭС

На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.

Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.

Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.

Переработка топлива АЭС

Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.

Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.

Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.

Как строится АЭС?

Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.

Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.

Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.

Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.

Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.

Плавучая АЭС

Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.

Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.

Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.

Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.

Безопасность АЭС

После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:

На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.

На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.

Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.

Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.

Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.

Ядерные реакторы

Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.

Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.

Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:

  • водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
  • графитоводные (замедлитель – графит, теплоноситель – вода);
  • графитогазовые (замедлитель – графит, теплоноситель – газ);
  • тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).

КПД АЭС и мощность АЭС

Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.

Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.

Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.

Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.

Стоимость АЭС

АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.

В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.

По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.

Предложение о создании реактора АМ будущей АЭС впервые прозвучало 29 ноября 1949 г. на совещании научного руководителя атомного проекта И.В. Курчатова, директора Института физпроблем А.П. Александрова, директора НИИХимаша Н.А. Доллежаля и учёного секретаря НТС отрасли Б.С. Позднякова. Совещание рекомендовало включить в план НИР ПГУ на 1950 г. «проект реактора на обогащённом уране с небольшими габаритами только для энергетических целей общей мощностью по тепловыделению в 300 единиц, эффективной мощностью около 50 единиц» с графитом и водяным теплоносителем. Тогда же были даны поручения о срочном проведении физических расчётов и экспериментальных исследований по этому реактору.

Позднее И.В. Курчатов и А.П. Завенягин объясняли выбор реактора АМ для первоочередного строительства тем, «что в нём может быть более, чем в других агрегатах, использован опыт обычной котельной практики: общая относительная простота агрегата облегчает и удешевляет строительство».

В этот период на разных уровнях обсуждаются варианты использования энергетических реакторов.

ПРОЕКТ

Было признано целесообразным начать с создания реактора для корабельной энергетической установки. В обосновании проекта этого реактора и для «принципиального подтверждения... практической возможности преобразования тепла ядерных реакций атомных установок в механическую и электрическую энергии» было решено построить в Обнинске, на территории Лаборатории «В» , атомную электростанцию с тремя реакторными установками, в том числе и установкой АМ, ставшей реактором Первой АЭС).

Постановлением СМ СССР от 16 мая 1950 г. НИОКР по АМ поручались ЛИПАН (институт И.В. Курчатова), НИИХиммаш, ГСПИ-11, ВТИ). В 1950 - начале 1951 гг. эти организации провели предварительные расчёты (П.Э. Немировский, С.М. Фейнберг, Ю.Н. Занков), предварительные проектные проработки и др., затем все работы по этому реактору были, по решению И.В. Курчатова, переданы в Лабораторию «В» . Научным руководителем назначен , главным конструктором - Н.А. Доллежаль.

Проектом были предусмотрены следующие параметры реактора: тепловая мощность 30 тыс. кВт, электрическая мощность - 5 тыс. кВт, тип реактора - реактор на тепловых нейтронах с графитовым замедлителем и охлаждением натуральной водой.

К этому времени в стране уже был опыт создания реакторов такого типа (промышленные реакторы для наработки бомбового материала), но они существенно отличались от энергетических, к которым относится реактор АМ. Сложности были связаны с необходимостью получения в реакторе АМ высоких температур теплоносителя, из чего следовало, что придётся вести поиск новых материалов и сплавов, выдерживающих эти температуры, устойчивых к коррозии, не поглощающих нейтроны в больших количествах и др. Для инициаторов строительства АЭС с реактором АМ эти проблемы были очевидны изначально, вопрос был в том, как скоро и насколько удачно их удастся преодолеть.

РАСЧЁТЫ И СТЕНД

К моменту передачи работы по АМ в Лабораторию «В» проект определился только в общих чертах. Оставалось много физических, технических и технологических проблем, которые предстояло решить, и их число возрастало по мере работы над реактором.

Прежде всего, это касалось физических расчётов реактора, которые приходилось вести, не имея многих необходимых для этого данных. В Лаборатории «В» некоторыми вопросами теории реакторов на тепловых нейтронах занимался Д.Ф. Зарецкий, а основные расчёты проводились группой М.Е. Минашина в отделе А.К. Красина . М.Е. Минашина особенно беспокоило отсутствие точных значений многих констант. Организовать их измерение на месте было сложно. По его инициативе часть из них постепенно пополнялась в основном за счёт измерений, проведённых ЛИПАН и немногих в Лаборатории «В» , но в целом нельзя было гарантировать высокую точность рассчитываемых параметров. Поэтому в конце февраля - начале марта 1954 г. был собран стенд АМФ - критсборка реактора АМ, которая подтвердила удовлетворительное качество расчётов. И хотя на сборке нельзя было воспроизвести все условия реального реактора, результаты поддержали надежду на успех, хотя сомнений оставалось много.

На этом стенде 3 марта 1954 г. была впервые в Обнинске осуществлена цепная реакция деления урана.

Но, учитывая, что экспериментальные данные постоянно уточнялись, совершенствовалась методика расчётов, вплоть до запуска реактора продолжалось изучение величины загрузки реактора топливом, поведение реактора в нестандартных режимах, вычислялись параметры поглощающих стержней и др.

СОЗДАНИЕ ТВЭЛА

С другой важнейшей задачей - созданием тепловыделяющего элемента (твэла) - блестяще справились В.А. Малых и коллектив технологического отдела Лаборатории «В» . Разработкой твэла занималось несколько смежных организаций, но только вариант, предложенный В.А. Малых , показал высокую работоспособность. Поиск конструкции был завершён в конце 1952 г. разработкой нового типа твэла (с дисперсионной композицией уран-молибденовой крупки в магниевой матрице).

Этот тип твэла позволял проводить их отбраковку на предреакторных испытаниях (в Лаборатории «В» для этого были созданы специальные стенды), что очень важно для обеспечения надёжной работы реактора. Устойчивость нового твэла в нейтронном потоке изучалась в ЛИПАН на реакторе МР. В НИИХиммаше были разработаны рабочие каналы реактора.

Так впервые в нашей стране была решена, пожалуй, самая главная и самая сложная проблема зарождающейся атомной энергетики – создание тепловыделяющего элемента.

СТРОИТЕЛЬСТВО

В 1951 г., одновременно с началом в Лаборатории «В» исследовательских работ по реактору АМ, на её территории началось строительство здания атомной станции.

Начальником строительства был назначен П.И. Захаров, главным инженером объекта - .

Как вспоминал Д.И. Блохинцев, «здание АЭС в важнейших своих частях имело толстые стены из железобетонного монолита, чтобы обеспечить биологическую защиту от ядерного излучения. В стены закладывались трубопроводы, каналы для кабеля, для вентиляции и т.п. Ясно, что переделки были невозможны, и поэтому при проектировании здания, по возможности, предусматривались запасы с расчётом на предполагаемые изменения. На разработку новых видов оборудования и на выполнение научно-исследовательских работ давались научно-технические задания для «сторонних организаций» – институтов, конструкторских бюро и предприятий. Часто эти сами задания не могли быть полными и уточнялись и дополнялись по мере проектирования. Основные инженерно-конструкторские решения... разрабатывались конструкторским коллективом во главе с Н.А. Доллежалем и его ближайшим помощником П.И. Алещенковым...»

Стиль работы по строительству первой АЭС характеризовался быстрым принятием решений, скоростью разработок, определённой выработанной глубиной первичных проработок и способами доработки принимаемых технических решений, широким охватом вариантных и страхующих направлений. Первая АЭС была создана за три года.

ПУСК

В начале 1954 г. началась проверка и опробование различных систем станции.

9 мая 1954 года в Лаборатории "В" началась загрузка активной зоны реактора АЭС топливными каналами. При внесении 61-го топливного канала было достигнуто критическое состояние, в 19 ч. 40 мин. В реакторе началась цепная самоподдерживающаяся реакция деления ядер урана. Состоялся физический пуск атомной электростанции.

Вспоминая о пуске, писал: «Постепенно мощность реактора увеличивалась, и наконец где-то около здания ТЭЦ, куда подавался пар от реактора, мы увидели струю, со звонким шипением вырывавшуюся из клапана. Белое облачко обыкновенного пара, и к тому же еще недостаточно горячего, чтобы вращать турбину, показалось нам чудом: ведь это первый пар, полученный на атомной энергии. Его появление послужило поводом для объятий, поздравлений «с легким паром» и даже для слез радости. Наше ликование разделял и И.В. Курчатов, принимавший участие в работе в те дни. После получения пара с давлением 12 атм. и при температуре 260 °C стало возможным изучение всех узлов АЭС в условиях, близких к проектным, а 26 июня 1954 г., в вечернюю смену, в 17 час. 45 мин., была открыта задвижка подачи пара на турбогенератор, и он начал вырабатывать электроэнергию от атомного котла. Первая в мире атомная электростанция встала под промышленную нагрузку».

«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.»

Ещё до пуска была подготовлена первая программа экспериментальных работ на реакторе АМ, и вплоть до закрытия станции он был одной из основных реакторных баз, на которых проводились нейтронно-физические исследования, исследования по физике твёрдого тела, испытания твэлов, ЭГК, наработка изотопной продукции и др. На АЭС прошли подготовку экипажи первых атомных подводных лодок, атомного ледокола «Ленин», персонал советских и зарубежных АЭС.

Пуск АЭС для молодого коллектива института стал первой проверкой на готовность к решению новых и более сложных задач. В начальные месяцы работы доводили отдельные агрегаты и системы, подробно изучали физические характеристики реактора, тепловой режим оборудования и всей станции, дорабатывали и исправляли различные устройства. В октябре 1954 г. станция была выведена на проектную мощность.

«Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.

Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года...

Шанхай, 1 июля (ТАСС). Откликаясь на пуски в эксплуатацию советской электростанции на атомной энергии, токийское радио передает: США и Англия также планируют строительство атомных электростанций, но завершение их строительства они намечают на 1956-1957 годы. То обстоятельство, то Советский Союз опередил Англию и Америку в деле использования атомной энергии в мирных целях, говорит о том, что советские ученые добились больших успехов в области атомной энергии. Один из выдающихся японских специалистов в области ядерной физики - профессор Иосио Фудзиока, комментируя сообщение о пуске в СССР электростанции на атомной энергии, заявил, что это является началом «новой эры».

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, как АЭС вырабатывает электроэнергию, хотя наверняка знают какую-нибудь легенду про АЭС. В статье будет рассказано в общих чертах как работает атомная электростанция. Каких-то тайн и разоблачений ждать не стоит, но кто-нибудь узнает для себя что-то новенькое.
В статье будет описываются атомные реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.

Видео о том как работает атомная электростанция

Принцип работы атомной электростанции - анимация


В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.


Тепловыделяющая сборка реактора АЭС в натуральную величину

Деление ядер урана внутри атомного реактора

Ядра урана делятся с образованием нейтронов (2 или 3 нейтрона), которые, попадая в другие ядра, также могут вызывать их деление. Так возникает цепная ядерная реакция. При этом отношение числа образовавшихся нейтронов к числу нейтронов на предыдущем шаге деления называется коэффициентом размножения нейтронов k. Если k<1, реакция затухает. При к=1 идёт самоподдерживающаяся цепная ядерная реакция. Когда k>1, реакция ускоряется, вплоть до ядерного взрыва. В ядерных реакторах поддерживается управляемая цепная ядерная реакция, удерживая k близкой к единице.



Реактор атомной электростанции с загруженными тепловыделяющими сборками

Как вырабатывается электроэнергия на АЭС

В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура - воду. Вода подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону.

Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.



Турбинное отделение АЭС и сама турбина

Такая сложная двухконтурная система создана для того, чтобы оградить оборудование АЭС (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.

Откуда и как управляют атомной электростанцией

Управление блоками АЭС осуществляется из блочного щита управления, который обычно сводит простого обывателя обилием «лампочек, крутилочек и кнопочек».

Щит управления расположен в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся:

  • ведущий инженер по управлению реактором
  • ведущий инженер по управлению турбинами
  • ведущий инженер по управлению блоком
  • начальник смены блока


Территория АЭС

Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.

Зоны доступа атомной электростанции

Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.

Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.


Дозиметрический контроль на выходе из ЗКД атомной электростанции

Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы - это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы - ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.

Безопасность атомной электростанции

Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.


Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.

Как ремонтируют атомные электростанции?

Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. дин раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.

 
Статьи по теме:
Организация освоения новых видов изделий Организация освоения производства новых видов продукции
6.1. Структура цикла создания и освоения новых товаров. Жизненный цикл товара (изделия) и место в нем научно-технической подготовки производства Одним из главных факторов успеха деятельности предприятия в условиях рынка является непрерывное обновление т
Статусы про счастливую любовь Статус о любви и о счастье безумной
Если вы переживаете удивительное чувство счастья и любви, поделитесь им со своими друзьями, разместив на странице любимой социальной сети красивые статусы. Таким статусом вы дадите надежду каждому, кто испытывает горькое разочарование в жизни: он поймет —
Обзор бизнес-модели: Тепличное хозяйство
Некоторые убеждены, что зимнее время года – это пора отдыха и аккумулирования сил, а другие используют этот период для того, чтобы заработать денег. Каким образом можно эффективно использовать холодную пору? Можно подумать о зимней теплице как варианте со
Чекопечатающие машины в деятельности ип Кто может ее применять
Начиная с 15.07.2016 года ИП, который работает по ЕНВД, может выдавать документ любого типа , подтверждающий оплату или прием денежных средств. До этого предприниматель обязан был предоставлять в качестве подтверждающего акта бланк строгой отчетности (БСО